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Hitting time for SRW

Let X be a r.v. with

P (X = 1) = P (X = −1) = 1

2
.

Let X1,X2, . . . be iid, Xi
d
= X . Let S0 := 0 and

Sn := X1 + · · ·+ Xn for n ≥ 1. We define

(1) T := min {n : Sn = 1}

Our goal on the next slides is to find the probability

generating function α Ô→ E
[
αT

]
of T .

We write Fn := σ(X1, . . . ,Xn) = σ(S0, S1, . . . , Sn). Then
S = (Sn) is adapted to {Fn}. Clearly,
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Hitting time for SRW cont.

E
[
eθX

]
=
1

2

(
eθ + e−θ

)
.

So,

(2) E
[
(sech θ · eθXn) = 1,

]

where sech θ = 1/ cosh θ = 2/(eθ + e−θ). (Read:
hyperbolic secant). So, Mθ = (Mθ

n),

(3) Mθ
n = (sech θ)neθSn .

is a martingale by A File Example 1.8. Using that T is a
stopping time:
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Hitting time for SSRW cont.

(4) E
[
Mθ

T∧n

]
= E

[
(sech θ)T∧neθST∧n

]
= 1 ∀n.

Assume that θ > 0. Then

exp (θ · ST∧n) ≤ eθ. So, Mθ
T∧n ≤ 1 (this follows

from(3) since sech θ ≤ 1).

lim
n→∞Mθ

T∧n = Mθ
T , where Mθ

T = 0 if T = ∞.

Using (4) and the Dominated Conv. Thm.

(5) E
[
Mθ

T

]
= 1 = E

[
(sech θ)Teθ

︸ ︷︷ ︸
0 if T=∞

]
,
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Hitting time for SSRW cont.

Note that eθ·ST = eθ by the definition of T . So we
obtained:

(6) E
[
(sech θ)T

]
= e−θ, θ > 0.

Observe that

(7) lim
θ→0+

(sech θ)T =




1, if T < ∞;
0, if T = ∞.

Using Dominated Conv. Thm., by (6), (7)

1 = lim
θ→0+

E
[
(sech θ)T

]
= E

[
✶{T<∞}

]
= P (T < ∞) .
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Hitting time for SSRW cont.

In (6) let α := sech θ. Then using (6) we get

(8)
∞∑

n=1

αn · P (T = n) = E
[
αT

]

= e−θ = α−1
[
1 −

√
1 − α2

]
.

Hence,

(9) P (T = 2m − 1) = (−1)m+1 ·
( 1

2
m

)
.
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Explanation of (9)

Recall that for an |x | < 1 we have

(1+ x)β =
∞∑

n=0


β

n


xn =

∞∑

n=0

β(β − 1) · · · (β − n + 1)

n!
xn.

Using this with β = 1/2 and x = −α2 we get

(10) α−1
(
1 −

√
1 − α2

)
=

∞∑

n=1




1
2

n


(−1)n+1α2n−1.

Putting together (8) and (10) yields (9). � The heart of
the matter was (8). Now we give an alternative proof for
(8).
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An easier proof for (8)

Fact 1.1

Consider a (simple symmetric) random walker who starts
from −1. Let

T1 be the first time she reaches 0,

T2 be the time she needs to get to 1 AFTER she
reached 0.

(So, she needs time T1 + T2 to get to 1 from −1.) Then
(a) T1

d
= T2

d
= T ( T was defined in (1)).

(b) T and T1 are independent .
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An easier proof for (8) cont.

This is immediate from the Strong Markov Property of
SSRW. (We learned about the Strong Markov Property
on slide # ?? of File A of the course Stochastic
Processes.
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An easier proof for (8) cont.

Let α ∈ (0, 1]. we define f (α) := E
[
αT

]
. ( T was

defined in (1)). Then

f (α) =
1

2
E

[
αT |X1 = 1

]
+
1

2
E

[
αT |X1 = −1

]

=
1

2
α+

1

2
E

[
α1+T1+T2

]
= 1

2α+ αf (α)2 .

This implies that f (α) = α−1
[
1 −

√
1 − α2

]
, that is (8)

holds.
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Superharmonic functions

First recall from File A: Definition 2.2, Theorem 2.6 and
Theorem 6.6 (Optional stopping thm). Let S be a
countable set and let P = (p(i , j))i ,j∈S be stochastic
matrix. Let µ be any measure on S. Let Z = (Zn)

∞
n=0 be

the Markov chain corresponding to the transition
probability matrix P and initial distribution µ. That is

(11)

Pµ (Z0 = i0,Z1 = i1 . . . ,Zn = in) = µi0 ·
n−1∏

k=1

p(ik , ik+1).

Let Fn := σ(Z0, . . . ,Zn). Then

(12) Pµ (Zn+1 = j |Fn) = p(Zn, j).
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Superharmonic functions cont.

Recall that for a function h : S → R
+ we defined the

function Ph : S → R
+ by

(Ph)(i) =
∑

j∈S
p(i , j)h(j), i ∈ S .

Assume that h is P-superharmonic . That is

(13) (Ph)(i) ≤ h(i), ∀i ∈ S.

It follows from File A Theorem 2.6 that h(Zn) is a
supermartingal.
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Superharmonic functions cont.

Namely,

Eµ [h(Zn+1)|Fn] =
∑

p(Zn,j)

h(j) = (Ph)(Zn) ≤ h(Zn).

Lemma 2.1

The Markov chain Z = (Zn) is irreducible and recurrent
iff every non-negative superharmonic function is constant.

We prove only the =⇒ implication.
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Superharmonic functions cont.

Proof
Assume that the chain Z = (Zn) is irreducible and

recurrent. Then fij := Pi (Tj < ∞) = 1, ∀i , j ∈ S ,

where Tj := min {n ≥ 1 : Zn = j} . Let h be a
superharmonic function. Consider the process: h(Zn) .

By Theorem 2.6, h(Zn) is a supermartingale. Then by
File A, Theorem 6.8, (a corollary of the Optional
Stopping Theorem) we have

h(j) = Ei

[
h(ZTj)

]
≤ Ei [h(Z0)] = h(i).

That is h is constant.
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Uncrossings

Given a process X = (Xn) and numbers a < b. We

define the upcrossings of [a, b] by Xn by time N ∈ N as
follows: Let S0 := 0, a < b and let us define the
following stopping times:

Rk : = min {n ≥ Sk−1 : Xn > b}
Sk : = min {n ≥ Rk : Xn < a} .

The upcrossings of [a, b] by time N is

UN [a, b](ω) := max {k : Rk(ω) ≤ N} .

Now we construct a game which corresponds to this
process as we did on slide # 24 in File A.
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Upcrossing cont.

Imagine that somebody plays games at times
k = 1, 2, . . . . Let Xk − Xk−1 be the net winnings per
unit stake in game n.
Cn is the player’s stake at time n (specified on the next
slide) which is decided based upon the history of the
game up to time n − 1. The winning on game n is
Cn(Xn − Xn−1). The total winning after n game is

(14) Yn :=
∑

1≤k≤n
Ck(Xk − Xk−1) =: (C • X )n .

By definition: Y0(ω) ≡ 0. (C • X )0 = 0 and
Fn := σ(X1, . . . ,Xn). So, we assumed above that
Cn ∈ Fn−1. Clearly, Yn − Yn−1 = Cn(Xn − Xn−1).
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Uncrossing cont., the definition of Cn

Starting from time n = 0, we define Cn the stake at time
n as follows:

C1 := {X0<a}

Cn = {Cn−1=1}∩{Xn−1≤b} + {Cn−1=0}∩{Xn−1<a} .

On the next Figure we color (n,Xn) ∈ R
2

white if Cn = 0,
black if Cn = 1.

In summary:

The first black ball appears where we go below a for the
first time. The only way to get a black ball is:

either after a white ball which is below a or
after a black ball which is below b .
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Uncrossing cont.

Observe that

Remark 3.1

(a) All the increase of Y is due to a run of black
balls which does not end at N .

(b) All the decrease of Y is due to a run of black
balls which ends at N .
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Uncrossing cont.

Remark cont.
(c) every run of black balls which ends earlier

than N follows a white ball which is below a
(let say Xk) and ends with a black ball above
b (let say Xℓ). Then there is exactly one
uprcossing between k and ℓ which corresponds
to this run of black balls.

(d) The maximum decrease in Y caused by the
last run of black balls is (XN − a)−, where

(XN − a)− := max {0, −(XN − a)} .
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Figure: This and the previous Figure is from Williams’ book.
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Uncrossing cont.

It follows from Remark 3.1 that

(15) YN(ω) ≥ (b − a)UN [a, b](ω)− [XN(ω − a)]− .

Lemma 3.2 (Doob’s Upcrossing Lema)

Let X = (Xn) be a supermartingale . Then

(16) (b − a)E [UN [a, b]] ≤ E
[
(XN − a)−

]
.
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Uncrossing cont.

Proof.
Using that C is previsible, bounded and non-negative we
may apply Theorem 4.2 of File A to obtain that
Y = C • X is also a supermartingale . Then

E [YN ] ≤ E [Y0] = 0 .

This and (15) together imply that (16) holds.
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Uncrossing cont.

Corollary 3.3

Let X = (Xn) be an L
1-bounded supermartingale:

(17) sup
n

E [(|Xn|)] < ∞ .

For an a < b let U∞[a, b] := lim
N→∞

UN [a, b] Then

(18) (b − a)E [U∞[a, b]] ≤ |a|+ sup
n

E [|Xn|] .

Hence,

(19) P (U∞[a, b] = ∞) = 0.
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Uncrossing cont.

Proof.
By (16), for every N we have

(20) (b − a)E [UN [a, b]]

≤ |a|+ E [|XN |] ≤ |a|+ sup
n

E [|Xn|] .

Let N ↑ ∞ and use Monotone Convergency
Theorem.

Definition 3.4

For definiteness for a general X = (Xn) we define

X∞(ω) := lim sup
n→∞

Xn(ω) .
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Doob’s Forward Convergence Theorem

Theorem 3.5 (Doob’s Forward Convergence

Theorem)

Let X = (Xn) be an L
1-bounded ( (17) holds)

supermartingale. Then

X∞ = lim
n→∞Xn, and X∞ < ∞ a.s. .

Let Λ be the set of ω ∈ Ω for which Xn(ω) does NOT

converge to a limit in [−∞, ∞]. So there is no limit
even is we alow that the limit can be infinite. So, for an
ω ∈ Λc the limit lim

n→∞XN(ω) ∈ [−∞, ∞] exist.
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Forward Convergence Theorem cont.

Proof.

Λ =
⋃

a,b∈Q,

a<b

{
ω : lim inf

n→∞ Xn(ω) < a < b < lim sup
n→∞

Xn(ω)

}

︸ ︷︷ ︸
Λa,b

⊂ ⋃

a,b∈Q,

a<b

{ω : U∞[a, b](ω) = ∞}
︸ ︷︷ ︸

Λ̃̃Λ̃Λa,b

,

By (19) we have P
(
Λ̃a,b

)
= 0, hence P (Λ) = 0. So, for

almost all ω the following limit exists:

X∞ = lim
n→∞Xn(ω) ∈ [−∞, ∞].
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Forward Convergence Theorem cont.

proof cont.
Now we use Fatau Lemma:

E [|X∞|] = E

[
lim inf
n→∞ |Xn|

]

≤ lim inf
n→∞ E [|Xn|] ≤ sup

n
E [|Xn|] < ∞ ,

by assumption. This shows that P (X∞ < ∞) = 1 . So
the limit exists and less than ∞ almost everywhere. �

Be careful. It can happen that the limit does not exists
in L1.
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Forward Convergence Theorem cont.

Corollary 3.6

Assume that X = (Xn) is a non-negative
supermartingale. Then the limit X∞ := lim

n→∞Xn exists

almost surely. (This was Theorem ?? in File E on the
course "Stochastic Processes".)

Proof.
X is L1-bounded. In deed

E [|Xn|] = E [Xn] ≤ E [X0] .

Then we apply Theorem 3.5.
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Pythagorean formula for L
2 martingales

Below we always assume that M = (Mn) is a martingale
in L2:

(21) Mn ∈ L2 ∀n.

Then the Pythagorean formula holds:

(22) E
[
M2

n

]
= E

[
M2

0

]
+

n∑
k=1

E
[
(Mk − Mk−1)

2
]
.

This follows from the orthogonality (in L2) of the
increments (see Theorem ?? in File E).

Károly Simon (TU Budapest) Markov Processes & Martingales C File 33 / 188

Pythagorean formula for L
2 martingales

cont.

Namely,

(23) Mn = M0 +
n∑

k=1

(Mk − Mk−1)

and the increments are orthogonal: ∀s ≤ r ≤ t ≤ z we
have

(24) E [(Mr − Ms)(Mz − Mt)] = 0.

and

(25) E [Ms(Mz − Mt)] = 0.

So, we take squares of both sides in (23) to get (22).
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Martingales bounded in L
2

Definition 3.7

M = (Mn), Mn ∈ L2 is bounded in L2 if

(26) sup
n

‖Mn‖2 < ∞ that is sup
n

E
[
M2

n

]
< ∞.

By the Pythagorean formula

(27) M is L2 bounded ⇐⇒
∞∑

k=1

E
[
(Mk − Mk−1)

2
]

< ∞.
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Martingales bounded in L
2 cont.

Theorem 3.8

Assume that M is an L2-bounded martingale. (That is
(26) holds). Then

(28) Mn → M∞ both a.s. and in L2.

Proof.
Assume that M is L2-bounded. Then M is also
L1-bounded. So, we can apply Doob’s Convergence
Theorem (Theorem 3.5).

Károly Simon (TU Budapest) Markov Processes & Martingales C File 36 / 188

Martingales bounded in L
2 cont.

Proof cont.
This implies that the following limit exists and finite

lim
n→∞Mn = M∞, a.s.

By the Pythagorean thm.:

(29) E
[
(Mn+r − Mn)

2
]
=

n+r∑
k=n+1

E
[
(Mk − Mk−1)

2
]

Let r → ∞ on both sides to obtain:
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Martingales bounded in L
2 cont.

Proof cont.

(30) E
[
(M∞ − Mn)

2
]

≤
∞∑

k=n+1

E
[
(Mk − Mk−1)

2
]

Hence,

(31) lim
n→∞E

[
(M∞ − Mn)

2
]
= 0.

That is Mn → M∞ also in L2. �
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Martingales bounded in L
2 cont.

We remark that it follows from putting together (3) and
(31) that there is equality in (30). That is

(32) E
[
(M∞ − Mn)

2
]
=

∞∑

k=n+1

E
[
(Mk − Mk−1)

2
]
.

Károly Simon (TU Budapest) Markov Processes & Martingales C File 39 / 188

dimH

1 Hitting time for SRW

2 Non-negative superharmonic functions of martingale

3 Martingal convergence

4 Sums of zero-mean independent r.v.

5 Doob decomposition

6 Closing

7 Preparation for the Uniform families

8 Uniform families

9 LIL

10 Doob’s Lp inequality

11 Kakutani’s Theorem on Product Martingales

Károly Simon (TU Budapest) Markov Processes & Martingales C File 40 / 188



Sums of zero-mean independent r.v.

Theorem 4.1

Assume that X1,X2, . . . are independent and
σ2

k := Var(Xk) < ∞.

(a) If
∞∑

k=1
σ2

k < ∞ then
∞∑

k=1
Xk converges a.s..

(b) If X = (Xn) is bounded (that is ∃K s.t.

∀n, ∀ω, we have |Xn(ω)| < K) and
∞∑

k=1
Xk

converges a.s. then
∞∑

k=1
σ2

k < ∞ .

Note that it follows from Kolomogov’s 0 − 1 law that
P (Xk converges ) = 0 or 1.
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Sums of zero-mean independent r.v. cont.

In the proof we use the following

Definition 4.2

Fn := σ {X1, . . . ,Xn} , F0 := {∅,Ω}
Mn := X1 + · · ·+ Xn, M0 := 0

Further, A0 := 0, N0 := 0 and let

(33) An :=
n∑

k=1

σ2
k , Nn := M2

n − An.
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Sums of zero-mean independent r.v. cont.

Proof of part (a)
We know that M is a martingale with

(34) E
[
(Mk − Mk−1)

2
]
= E

[
X 2

k

]
= σ2

k .

So, by (22) we get

(35) E
[
M2

n

]
=

n∑

k=1

σ2
k = An.

If
∞∑

k=1
σ2

k < ∞ then M = (Mn) is bounded in L
2, so

lim
n→∞Mn exists almost surely.
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Sums of zero-mean independent r.v. cont.

Proof of part (b)

Similarly to (34) we have
(36)
E

[
(Mk − Mk−1)

2|Fk−1

]
= E

[
X 2

k |Fk−1

]
= E

[
X 2

k

]
= σ2

k .

since Xk is independent of Fk−1. Using this and the fact
that Mk−1 ∈ Fk−1, we obtain that

σ2
k = E

[
M2

k |Fk−1

]
− 2Mk−1E [Mk |Fk−1] +M2

k−1

= E
[
M2

k |Fk−1

]
− M2

k−1.
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Sums of zero-mean independent r.v. cont.

Proof of part (b) cont.

That is E
[
M2

k |Fk−1

]
− σ2

k = M2
k−1. This implies that

(37) E



M2

n −
n∑

k=1

σ2
k

︸ ︷︷ ︸
Nn

|Fn−1



= M2

n−1 −
n−1∑

k=1

σ2
k

︸ ︷︷ ︸
Nn−1

.

So, we have just proved that Nn (defined in (33)) is a

martingale .

Károly Simon (TU Budapest) Markov Processes & Martingales C File 45 / 188

Sums of zero-mean independent r.v. cont.

Proof of part (b) cont.
For a fixed c > 0, we define the stopping time

T := inf {r : |Mr | > c} .

We defined the stopped process on slide # 35 of File A
as

NT
n (ω) := NT∧n(ω).

It follows from Theorem 6.1 of File A that NT is also a
martingale since N is a martingale as we pointed out
above.
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Sums of zero-mean independent r.v. cont.

Proof of part (b) cont.
So, by Theorem 6.1, we have

(38) 0 = E [N0] = E
[
NT

n

]
= E

[
(MT

n )
2
]
− AT∧n.

Now we prove that

(39) |MT
n | = |MT∧n| ≤ K + c , ∀n.

Namely, if n < T (ω) ≤ ∞ then

|MT
n (ω)| = |Mn(ω)| ≤ c by the definition of T . So, in

this case (39) holds.
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Sums of zero-mean independent r.v. cont.

Proof of part (b) cont.

On the other hand, if T (ω) ≤ n then

(40) MT (ω)∧n(ω) = MT (ω)(ω).

It follows from our assumption that whenever T is finite
we have

|MT (ω) − MT (ω)−1(ω)| = |XT (ω)| < K .
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Sums of zero-mean independent r.v. cont.

Proof of part (b) cont.
However, by the definition of T , whenever T < ∞:

|MT−1| ≤ c .

Using the last two inequalities and the triangular
inequality we have that whenever T < ∞ we have

|MT | ≤ K + c .

Putting together this and (54) we obtain that (39) holds
also for those ω for which T (ω) ≤ n. So we have verified
(39)
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Sums of zero-mean independent r.v. cont.

Proof of part (b) cont.

Using (39) and (38) we get

E [AT∧n] ≤ (K + c)2 , ∀n.

Remember that we assumed that
n∑

k=1
Xk = Mn a.s.

convergent. This means that the partial sums
{Mn(ω)}∞

n=1 is bounded for a.a. ω.
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Sums of zero-mean independent r.v. cont.

Proof of part (b) cont.
So, there is an L such that on a set H of positive
measure, P (H) > 0, the partial sums are smaller than L
in modulus. So for any c > L we have

T (ω) = ∞, ∀ω ∈ H .

Hence for all ω ∈ H and for all n,

n∑

k=1

σ2
k = An = AT∧n(ω)

by(38)
= E

[
M2

n∧T

]
< (K + c)2.

In the last proof we used only that X is bounded and the
partial sums are bounded on a set of positive measure.
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Doob decomposition

Theorem 5.1 (Doob decomposition)

Given a filtered probability space (Ω, F , {Fn} ,P). Let

X = (Xn) be an adapted process with Xn ∈ L1 for all n.
Then X has a Doob decomposition:

(41) X = X0 +M + A ,

where

M = (Mn) is a martingale with M0 = 0

A = (An) is previsible (that is An ∈ Fn−1) with
A0 = 0. (An is called compensator of Xn).

The decomposition is unique mod zero.
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Doob decomposition cont.

The last comment means that: If

X = X0 + M̃ + Ã

is another decomposition then

P
(
Mn = M̃n,An = Ãn, ∀n

)
= 1.

Corollary 5.2

X is a submartingale iff A in its the Doob

decomposition (41), is an increasing process . That is

(42) P (An ≤ An+1) = 1.
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Doob decomposition cont.

Proof Thm 5.1
Strategy: Find our what the compensator A should be.
If X has decomposition given by (41)

(43) E [Xn − Xn−1|Fn−1]

= E [Mn − Mn−1|Fn−1] + E [An − An−1|Fn−1]

= 0+ An − An−1 .

So, the decomposition in (41) comes from:

(44) An :=
n∑

k=1
E [Xk − Xk−1|Fk−1] .
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Doob decomposition cont.

Proof Thm 5.1 cont.
Namely, let Mn := Xn − An. Then M = (Mn) is a
martingale:

E [Mn|Fn−1] = E [Xn − An|Fn−1]

E [Xn|Fn−1 − An]

E [Xn|Fn−1]− An−1 − E [Xn|Fn−1] + Xn−1

Mn−1 .
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Doob decomposition cont.

Proof Corollary 5.2
X = (Xn) is a submartingale if

E [Xk − Xk−1|Fk−1] ≥ 0.

On the other hand, by (43) this happens when

An ≥ An−1.
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Doob decomposition cont.

Remark 5.3
Assume taht X = (Xn) is an L

2 martingale, with X0 = 0.
Then (by Theorem ?? of File E of the Course Stochastic
Processes), ϕ(Xn) is a submartingale for any convex
function ϕ. In particular,

(45) Xn martingale =⇒ X 2
n submartingale.

Let A = (An) be the compensator of X . That is

X 2
n − An is a martingale.

We say that (An) is the quadratic variation of (Xn).
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Doob decomposition cont.

Remark 5.4

Let X = (Xn) be an L
2 martingale. Then the quadratic

variation is

An =
n∑

k=1

E
[
(Xk − Xk−1)

2|Fk−1

]
.

Recall:
Xn = Z0 + Z1 + · · ·+ Zn

is a random walk if Zn are iid and L
1. Let µ := E [Xi ].

Then Xn − nµ is a martingale . This was Example ?? in
File E in the course "stochastic Processes".
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Doob decomposition cont.

Remark 5.5

Let X = (Xn) be an L
2 random walk that is a martingale.

Then the quadratic variation is An = nσ2. The proof is
a home work # 22.

Remark 5.6

Let Xn be an L
2 martingale with quadratic variation

A = (An). Let Cn be previsible and also L
2. Then the

quadratic variation B = (Bn) of their martingale

transform Y = C • A is B = C 2 • X . The proof is
assigned as home work # 23.
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The angle bracket process

Let M be an L2 martingale with M0 = 0. We write

(46) M2 = N + A,

where N is a martingale and A is previsible and
increasing with

(47) N0 = 0 and A0 = 0.

We write

(48) < M >:= A .

So it makes sense to define

A∞ := lim
n→∞An, a.s..
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The angle bracket process cont.

Since E [Nn] = E [N0] = 0, we have

E
[
M2

n

]
= E [An] .

So, by the monotone convergence theorem:

(49) M is bounded in L2 ⇐⇒ E [A∞] < ∞.

Note that

(50) An − An−1 = E
[
M2

n − M2
n−1|Fn−1

]

= E
[
(Mn − Mn−1)

2|Fn−1

]
.
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Convegence of Mn vs. A∞ < ∞

Theorem 5.7

Let M be an L2 martingale with M0 = 0 and let A be a
version of < M >. Then

(a) For almost all ω for which A∞(ω) < ∞ we
have lim

n→∞Mn(ω) exists.

(b) Assume that M has uniformly bounded
increments. Then for almost all ω for which
lim

n→∞Mn(ω) exists, we have A∞(ω) < ∞.
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Convegence of Mn vs. A∞ < ∞ cont.

Proof of Theorem 5.7 part (a)
Recall: A is previsible, that is

(51) Az+1 ∈ Fz , ∀z ≥ 0.

Hence
S(k) := inf {n : An+1 > k}

is a stopping time. S(k) = ∞ means that Ar ≤ k for all
r ∈ N.
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Convergence of Mn vs. A∞ < ∞ cont.

Proof of Theorem 5.7 part (a) cont.

The relevance of S(k):

(52) {A∞ < ∞} = ⋃

k

{S(k) = ∞} .

So, the right hand side above is a partition of
{A∞ < ∞}.
Fact 5.8

The stopped process AS(k) is previsible .
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Convergence of Mn vs. A∞ < ∞ cont.

Proof of Theorem 5.7 part (a) cont.
To prove the Fact we need to verify that

(53) An∧S(k)(B) ∈ Fn−1 , ∀B ∈ R, ∀n ≥ 1.

To see this, we fix an n and a B ∈ R (Borel set on the
line) and we represent

{
An∧S(k) ∈ B

}
as:

{
An∧S(k) ∈ B

}
= F1 ∪ F2,

where F1, F2 correspond to S(k) = r < n, S(k) ≥ n
respectively. That is:
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Convergence of Mn vs. A∞ < ∞ cont.

Proof of Theorem 5.7 part (a) cont.

F1 : =
n−1⋃

r=0

{S(k) = r ;Ar ∈ B}

=
n−1⋃

r=0


{Ar ∈ B} ⋂ r⋂

ℓ=1

{Aℓ ≤ k} ⋂ {Ar+1 > k}

 .

Using that Ar+1 ∈ Fr for every r , (A is previsible), and
r + 1 ≤ n above, we get that

(54) F1 ∈ Fn−1 .
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Convergence of Mn vs. A∞ < ∞ cont.

Proof of Theorem 5.7 part (a) cont.

F2 = {An ∈ B} ⋂ {S(k) ≥ n}

= {An ∈ B} ⋂ n⋂

r=1

{Ar ≤ k} .

Clearly, all of the events in the previous line are in Fn−1.
This completes the proof of (53). So, we have verified
Fact 5.8 above.
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Convergence of Mn vs. A∞ < ∞ cont.

Proof of Theorem 5.7 part (a) cont.
So, we know that

AS(k) is previsible (Fact 5.8),

NS(k) is a martingale . This is so because

(a) N = M2 − A (defined in (46)) is a
martingale (by definition),

(b) S(k) is a stopping time

so, NS(k) is a martingale by Theorem 6.1 of File A
(this theorem says that in general, a martingale
raised to the power of a stopping time is a
martingale).

Károly Simon (TU Budapest) Markov Processes & Martingales C File 69 / 188

Convergence of Mn vs. A∞ < ∞ cont.

Proof of Theorem 5.7 part (a) cont.
By the uniqueness of Doob decomposition of

(MS(k))2 = martingale+ previsible

and since
(MS(k))2 = NS(k) + AS(k),

we obtain that

(55) < MS(k) >= AS(k) .

Károly Simon (TU Budapest) Markov Processes & Martingales C File 70 / 188

Convergence of Mn vs. A∞ < ∞ cont.

Proof of Theorem 5.7 part (a) cont.

By the definition of S(k) we have that

AS(k)
n ≤ k , ∀n.

So,

E
[
AS(k)

∞
]

< ∞ .

Using this, we can apply (49) for MS(k) instead of M to
obtain that MS(k) is an L2 bounded martingale.
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Convergence of Mn vs. A∞ < ∞ cont.

Proof of Theorem 5.7 part (a) cont.

Finally, we can apply Theorem 3.8 (L2 bounded
martingale convergence thm.) to get

(56) lim
n→∞Mn∧S(k) exists almost surely.
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Convergence of Mn vs. A∞ < ∞ cont.

Proof of Theorem 5.7 part (a) cont.
However,

(57) {A∞ < ∞} = ⋃

k

{S(k) = ∞} .

So part (a) follows from the combination of (56) and
(57). Namely, if A∞(ω) < ∞ then by (57) there exists a
k = k(ω) such that S(k)(ω) = ∞. Then

Mn∧S(k)(ω)(ω) = Mn(ω) ∀n.

Hence by (56) we obtain that part (a) holds.
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Convergence of Mn vs. A∞ < ∞ cont.

Proof of Theorem 5.7 part (b)

We argue by contradiction. Assume that part (b) of
Theorem 5.7 is not true. Then we have

(58) P

(
A∞ = ∞, sup

n
|Mn| < ∞

)
> 0 .

Then ∃c s.t. P
(
A∞ = ∞, sup

n
|Mn| < c

)
> 0. That is

(59) P (A∞ = ∞,T (c) = ∞) > 0 ,

where T (c) = inf {r : |Mr | > c}
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Convergence of Mn vs. A∞ < ∞ cont.

Proof of Theorem 5.7 part (b) cont.
By Theorem 6.1 of File A we have

(60) 0 = E [N0] = E
[
Nn

T (c)

]

= E
[
NT (c)∧n

]
= E

[
M2

T (c)∧n

]
− E

[
AT (c)∧n

]
.

Now we prove that there exists a K s.t.

(61) |MT (c)∧n| ≤ K + c .

Namely, by assumption the increments of M are
uniformly bounded.
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Convergence of Mn vs. A∞ < ∞ cont.

Proof of Theorem 5.7 part (b) cont.
That is, ∃K s.t.

(62) |Mn(ω)− Mn−1(ω)| < K , ∀ω and ∀n.

Observe that if n < T (c) then

|MT (c)∧n| = |Mn| < c .

On the other hand, if n ≥ T (c) then by the definition of
T (c) and by (62)
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Convergence of Mn vs. A∞ < ∞ cont.

Proof of Theorem 5.7 part (b) cont.

|MT (c)∧n| = |MT (c)| ≤ K + c

This and (60) imply that

(63) E
[
AT (c)∧n

]
≤ (c + K )2 , ∀n.

However, by monotone convergence Theorem we get
that (59) and (63) contradict to each other.�
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Cesáro’s Lemma

Given two sequences of real numbers {bn}∞
n=1 and

{vn}∞
n=1 satisfying the following conditions:

0 < b1, for all n : bn < bn+1, lim
n→∞ bn = ∞.

and
lim

n→∞ vn = v∞ ∈ R.

Then

(64) 1
bn

n∑
k=1
(bk − bk−1) · vk → v∞ .
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Kronecker’s Lemma

Let

{bn}∞
n=1 be defined as in Cesáro’s Lemma,

{xn}∞
n=1 be an arbitrary sequence of real numbers

sn := x1 + · · ·+ xn.

Then

(65)

( ∞∑
n=1

xn
bn
converges

)
=⇒

(
sn
bn

→ 0
)

.
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Strong law under variance cond.

Theorem 5.9

Let X1,X2, . . . be independent r.v. s.t.

(66) E [Xn] = 0, and
∞∑

n=1

Var(Xn)

n2
< ∞.

Then

(67) lim
n→∞

X1+···+Xn
n

= 0 a.s..
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Strong law under variance cond. cont.

Proof of Theorem 5.9
By Kronecker’s Lemma we only need to prove that

∞∑

n=1

Xn

n
, converges a.s..

We get this if we apply part (a) of Theorem 4.1 for the
r.v. Xn/n since their mean is zero and

Var(Xn/n) = Var(Xn)/n
2 .
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Strong law for L
2 martingales

Theorem 5.10

Let M be an L2 martingale with M0 = 0 and let
A =< M > (defined in (48)). Then

(68) A∞(ω) = ∞ =⇒ lim
n→∞

Mn(ω)

An(ω)
= 0.

Proof
First we claim that

(69) Wn :=
n∑

k=1

Mk − Mk−1

1+ Ak

is a martingale.
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Strong law for L
2 martingales cont.

Proof cont.
This is so because for Cn :=

{
(1+ An)

−1
}
the process

C = (Cn) is a bounded and previsible. Hence

(70) Wn = C • M

is a martingale too.

Fact 5.11

(71) < W >∞≤ 1.
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Strong law for L
2 martingales cont.

Proof cont.
Since < W > is a non-negative increasing process, in
order to prove Fact 5.11, it is enough to show that

(72) < W >n=
n∑

k=1

(< W >k − < W >k−1)

by (50)
=

n∑

k=1

E
[
(Wn − Wn−1)

2|Fn−1

]

≤ 1.

In the one but last step we used (50).
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Strong law for L
2 martingales cont.

Proof cont.
To verify (72) we prove another claim about the yellow
part of the previous formula:
Now we claim that

(73) E
[
(Wn − Wn−1)

2|Fn−1

]
≤ 1

1+An−1
− 1

1+An
.

To verify this, note that:
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Strong law for L
2 martingales cont.

Proof cont.

E
[
(Wn − Wn−1)

2|Fn−1

]
= E


(Mn − Mn−1)

2

(1+ An)2
|Fn−1




= (1+ An)
−2 ·




E


 M2

n︸︷︷︸
Nn+An

|Fn−1




︸ ︷︷ ︸
Nn−1+An

− M2
n−1︸ ︷︷ ︸

Nn−1+An−1




= (1+ An)
−2 · (Nn−1 + An − (Nn−1 + An−1))

= (1+ An)
−2 · (An − An−1)
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Strong law for L
2 martingales cont.

Proof cont.
However, using that An is increasing we get

(74)
An − An−1

(1+ An)2
≤ 1

1+ An−1
− 1

1+ An

.

This and the argument on the previous slide verifies that
(73) holds.
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Strong law for L
2 martingales cont.

Proof cont.
Observe that in (74) we have a telescopic sum on the
right hand side. This immediately implies that (72) holds
which, in turn, implies that Fact 5.11 holds.From (71)
and from Theorem 5.7 part (a) we get that

lim
n→∞Wn exists.

We can use Kronecker’s Lemma if bk = 1+ Ak → ∞
that is A∞ = ∞. In this case by Kronecker’s Lemma we
get lim

n→∞Mn/An = 0.

Károly Simon (TU Budapest) Markov Processes & Martingales C File 88 / 188



Borel Cantelli Lemma

Let En be events on the probability space (Ω, F ,P). We
write

E∞ := lim sup
n→∞

En :=
⋂∞

n=1
⋃∞

k=n En.

Clearly, E∞ is the set of ω for which infinitely many of En

occur.

Lemma 5.12 (Borel-Cantelli Lemma)

(a) If
∞∑

k=1
P (En) < ∞ then P (E∞) = 0.

(b) If {Ei}i are independent and
∞∑

k=1
P (En) = ∞

then P(E∞) = 1.
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Borel Cantelli Lemma cont.

Corollary 5.13 (Infinite Monkey theorem)

Monkey typing random on a typewriter for infinitely time
will type the complete works of Shakespeare eventually.

Figure: Picture is from Wikipedia. Proof is a homework
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Levy’s extension of BC Lemma

Theorem 5.14

Given a filtered space (Ω, F , {Fn} ,P) and a sequence of
events En ∈ Fn. Let

Zn :=
n∑

k=1
Ek , ξk := P (Ek |Fk−1) , Yn :=

n∑

k=1

ξk .

Then for almost all ω

(a) If Y∞(ω) < ∞ then Z∞(ω) < ∞.

(b) If Y∞(ω) = ∞ then lim
n→∞

Zn(ω)
Yn(ω) = 1.

Károly Simon (TU Budapest) Markov Processes & Martingales C File 91 / 188

Proof of BC Lemma as a corollary of Thm
5.14

Proof of BC Lemma as a corollary of Thm 5.14.
Using that E [ξk ] = P (Ek) we can see that part (a) of
Theorem 5.14 immediately implies the first part of BC
Lemma.

On the other hand if {En} are independent and
Fn := σ(E1, . . .En) then ξk = P (Ek). Hence the second
part of BC follows from part (b) of Theorem 5.14.
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Levy’s extension of BC Lemma cont.

Proof of Thm 5.14
Observe that Z = (Zn) is submartingale with Z0 := 0.
Namely, E [Zn+1|Fn] = E [ En+1|Fn] + Zn ≥ Zn. Now
observe that

Y is previsible since ξk ∈ Fk−1.

M := Z − Y is a martingale since by Ek ∈ Fk :

E [Zn+1 − Yn+1|Fn]

= Zn + E [ En+1|Fn]− (Yn + E [ En+1|Fn])

= Zn − Yn .
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Levy’s extension of BC Lemma cont.

Proof of Thm 5.14 cont.
That is Z = M + Y be the Doob decomposition of Z .
Now we observe that

(75) An :=< M >n=
n∑

k=1

ξk(1 − ξk) ≤ Yn.

To see this we substitute Xk for M
2
k into (44) and then

an immediate calculation yields (75).
Now we prove part (a): If Y∞(ω) < ∞ then
A∞(ω) < ∞. So, by Theorem 5.7 the limit lim

n→∞Mn(ω)

exists. In this way Z∞ < ∞ since Y∞ < ∞ by
assumption and lim

n→∞Mn(ω) exists.
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Levy’s extension of BC Lemma cont.

Proof of Thm 5.14 cont.
Now we prove part (b):

If Y∞ = ∞ and A∞ < ∞ then lim
n→∞Mn exists and

it is clear that Zn/Yn → 1.

If Y∞ = ∞ and A∞ = ∞ . It follows from
Theorem 5.10 that Mn/An → 0. So, by the last part
of (75) we have Mn/Yn → 0. From here and from
the definition of M we get Zn/Yn → 1.
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Closure

This Section is built on Chapter 10.8.5 of Resnik’s book
[20]. Here we discuss the following problem:

Let X = (Xn) be a positive martingale w.r.t. the
filtration Fn. Then we know by Corollary 3.6 that
Xn → X∞ a.s.. However, in general this does NOT
mean that Xn = E [X∞|Fn].

In this short Section first we give a counter example
which verifies the last assertion. Then we state a useful
theorem (Theorem 6.3) related to this problem and an
important corollary of this theorem. The proof of
Theorem 6.3 is available in [20, Section 10.8.5]. We omit
this proof here.
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Closure cont.

Example 6.1
Let Zn be a branching process and assume that the mean
of the offspring distribution µ < 1. Then the population
dies out so, Z∞ = 0. On the other hand Wn := Zn/µn is
a non-negative martingale so it converges to W∞ = 0.
However, Zn/µn Ó= 0 for all n.

Definition 6.2
A martingale {Xn, Fn} is closed (or right-closed) if
there exists an L1 r.v. X∞ ∈ F∞ = σ(Fn, n ∈ N) s.t.

Xn = E [X∞|Fn] for all n.
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Closure cont.

Theorem 6.3

Given a p ≥ 1 and a rv. X ∈ Lp. Also given a filtration
Fn and we write F∞ := σ(Fn, n ∈ N). Then for

(76) Xn := E [X |Fn] and X∞ := E [X |F∞]

we have Xn is a closed martingale which converges a.s.
and in Lp:

(77) Xn = E [X∞|F∞]

(78) Xn → X∞ a.s. and in Lp .
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Closure cont.

Corollary 6.4

For p ≥ 1 the class of Lp convergent non-negative
martingales is equal to the class:

C := {(E [X |Fn])
∞
n=0,X ∈ Lp,X ≥ 0} .

Proof of the Corollary
If (Xn) ∈ C then by Theorem 6.3 Xn is L

p convergent.
Conversely, let Xn ≥ 0 be an Lp convergent martingale.
If r ≥ n then E [Xr |Fn] = Xn.
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Closure cont.

Proof of the Corollary cont.

By assumption that Xr
Lp→ X∞ and E [•|Fn] is continuous

in Lp metric (this follows from the Lp-non expansive
property (property (e)) of the conditional expectation,
(see #133 slide if File "Some basic Facts from
probability theory" ). So, as r → ∞ we have

Xn = E [Xr |Fn]
Lp→ E [X∞|Fn] .

So Xn = E [X∞|Fn] . �
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dimH

1 Hitting time for SRW

2 Non-negative superharmonic functions of martingale

3 Martingal convergence

4 Sums of zero-mean independent r.v.

5 Doob decomposition

6 Closing

7 Preparation for the Uniform families

8 Uniform families

9 LIL

10 Doob’s Lp inequality

11 Kakutani’s Theorem on Product Martingales

Károly Simon (TU Budapest) Markov Processes & Martingales C File 102 / 188

Recall Fatou Lemma

From now we follow again Williams book [23, Chapter
14] about the uniformly integrable martingales. First we
recall some very well known lemmas:

Lemma 7.1 (Fatou Lemma)

Let X1,X2, . . . be non-negative r.v. on (Ω, F ,P). Then

E

[
lim inf
n→∞ Xn

]
≤ lim inf

n→∞ E [Xn] .

May be both sides are infinite.
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Reverse Fatou Lemma

Lemma 7.2 (reverse Fatou Lemma)

Let {Xn} be sequence of r.v. on (Ω, F ,P) s.t. ∃ a
non-negative r.v. Y ∈ F such that Xn ≤ Y and
E [Y ] < ∞. Then

E

[
lim sup

n→∞
Xn

]
≥ lim sup

n→∞
E [Xn] .

Proof.
Apply Fatou Lemma for Y − Xn.
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Theorem BDD

We will need the following version of Bounded
Convergence Theorem (abbreviated as BDD):

Theorem 7.3 (Theorem BDD)

Let Xn,X be rv. on (Ω, F , P). We assume that

(a) Xn
P→ X (Xn tends to X is Probability) AND

(b) ∃K s.t. ∀ω ∈ Ω, |Xn(ω)| < K. (That is the
process X = (Xn) is bounded.)

Then

Xn
L1→ X , that is E [|Xn − X |] → 0.
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Theorem BDD cont

Proof of Thm BDD
We claim that

(79) |X | ≤ K a.s..

Namely, for any k ∈ N

P
(
|X | > K + k−1

)
≤ P

(
|X − Xn| > k−1

)
, ∀n,

Using assumption (a) the right hand side tends to zero
for every k . This yields that (79) holds.

Károly Simon (TU Budapest) Markov Processes & Martingales C File 106 / 188

Theorem BDD cont

Proof of Thm BDD cont.
For a given ε choose n0 s.t. for all n > n0 we have

P

(
|Xn − X | >

1

3
ε

)
<

ε

3K
, for n ≥ n0.

So, whenever n ≥ n0 we have
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Theorem BDD cont

Proof of Thm BDD cont.

E [|Xn − X |] =E
[
|Xn − X |; |Xn − X | >

ε

3

]

+ E

[
|Xn − X |; |Xn − X | ≤ ε

3

]

=2KP

(
|Xn − X | >

ε

3

)
+

ε

3
≤ ε .�
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a.s. convergence vs conv. in prob.

The proof of the following theorem is available in [14,
p.137].

Theorem 7.4
Given X ,Xn be rv on (Ω, F ,P). Let

Yn := sup
k≥n

|Xk − X |.

Then

(80) Xn
a.s.−→ X ⇐⇒ Yn

P→ 0.
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Absolute continuity

Theorem 7.5

Let X ∈ L1(Ω, F ,P). Then ∀ε > 0 ∃δ > 0 s.t.

(81) If F ∈ F and P (F ) < δ =⇒ E [|X |;F ] < ε.

Proof
We argue by contradiction. Assume that ∃ε0 > 0 and
{Fn} s.t. Fn ∈ F s.t.

P (Fn) < 2−n and E [|X |;Fn] > ε0.
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Absolute continuity cont.

Proof cont.
Let

H := lim sup
n→∞

Fn.

That is ✶H = lim sup
n→∞

✶Fn. Then by Borel-Cantelli Lemma,

P (H) = 0.

On the other hand by the reversed Fatou Lemma
applied for the indicator functions of Fn we have:

E [|X |;H ] > ε0.

The last two displayed formulas contradict. �
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Absolute continuity cont.

Corollary 7.6

Let X ∈ L1(Ω, F ,P) and ε > 0. Then ∃K ∈ [0, ∞) such
that

(82) E [|X |; |X | > K ] < ε.

Proof.
Choose δ for ε as in Theorem 7.5. Choose a K s.t.
P (|X | > K ) ≤ E[|X |]

K
< δ. Then by the previous theorem

E [|X |; |X | > K ] < ε.

Homework # 31 is an extension of this Corollary.
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UI martingales, definition

Definition 8.1

Let C be a class of random variables on the probability
space (Ω, F ,P). We say that C is uniformly integrable

( UI ) if

(83) ∀ε > 0, ∃K s.t. ∀X ∈ C, E [|X |; |X | > K ] < ε.

Example 8.2 (Example of non-UI martingale)

Let the probability space be ([0, 1], R[0, 1], L1) and
Xn = n · ✶[0,n−1]. ∀K if n > K then E [Xn; |Xn| > K ] = 1
still Xn → 0 a.s. (but Xn Ó→ 0 in L1).
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UI families cont.

Remark 8.3
We have seen above that an L1-bounded family is NOT
necessarily UI but it is obvious that every UI family is
L1-bounded.

How to check if a family is UI? Two simple ways are as
follows:
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UI families cont.

Lemma 8.4

Let C is a class of random variables of (Ω, F ,P). Then
either of the following two conditions imply that C is UI.

(a) If ∃p > 1 and A ∈ R such that E [|X |p] < A
for all X ∈ C. (Lp bounded for some p > 1.)

(b) ∃Y ∈ L1(Ω, F ,P), s.t. ∀X ∈ C we have
|X (ω)| ≤ Y (ω). (C is dominated by an
integrable (non-negative) r.v..)

The proofs are easy and left as homeworks.
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UI families cont.

Theorem 8.5

Let X ,Xn ∈ L1(Ω, F ,P) for every n. The the following
two assertions are equivalent:

1 Xn
L1→ X (that is Xn → X in L1 that is

E [|Xn − X |] → 0).
2 Both of the following conditions hold:

(a) Xn
P→ X (that is ∀ε > 0:

lim
n→∞P (|Xn − X | > ε) = 0) AND

(b) The sequence {Xn}∞
n=1 is UI.

The complete proof is available: [23, p. 131]. Here we
prove only the "if" part.
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UI families cont.

Proof of the if part (a)

Assume that (a) and (b) hold. For a K ∈ [0, ∞) we
define

ϕK (x) :=





K , if x > K ;
x , if −K ≤ x ≤ K ;
−K , if x < −K .

Fix an ε > 0. Now we apply the fact that Xn is UI and
Corollary 7.6 in this order to conclude that ∃K s.t.

(84) E [|ϕK (Xn)− Xn|] <
ε

3
; E [|ϕK (X )− X |] <

ε

3
.
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UI families cont.

Proof of the if part (a) cont.
We claim that

(85) ϕK (Xn)
L1−→ ϕK (X ).

Using that |ϕK (x)− ϕK (y)| ≤ |x − y | and using that
Xn

P→ X , we obtain that ϕK (Xn)
P→ ϕK (X ). Observe

that the process {ϕK (Xn)} is bounded (by K ), so we can
apply Theorem BDD which yields that (85) holds.
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UI families cont.

Proof of the if part (a) cont.
Hence for a fixed ε > 0 we can find n0 s.t. for n ≥ n0 we
have

E [|ϕK (Xn)− ϕK (X )|] <
ε

3
.

Putting together this and the two inequalities in (84) we
obtain that for n ≥ n0:

E [|Xn − X |] < ε.�
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UI martingales definition

Definition 8.6 (UI martingale)

M = (Mn) is a UI martingale on a filtered probability
space (Ω, F , {Fn,P}) if

M is a martingale,

{Mn}∞
n=0 is a UI family.
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Conditional expectation vs. UI

Theorem 8.7

Let X ∈ L1. Then the following family is UI:

(86) C := {E [X |G] : G is a sub-algebra of F} .

More precisely, C consists of the versions of E [X |G], for
some G ⊂ F sub-σ-algebra.
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Conditional expectation vs. UI cont.

Proof
Fix an ε > 0. Using Theorem 7.5 there exist δ > 0 s.t.

(87) ∀F ∈ F , P (F ) < δ =⇒ E [|X |;F ] < ε.

Choose a K s.t.

(88) K−1
E [|X |] < δ.

Let G be a sub-σ-algebra of F and let Y be a version of
E [X |G]. Then by Jensen inequality:

(89) |Y | ≤ E [|X ||G] , a.s.
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Conditional expectation vs. UI cont.

Proof cont.
So, E [|Y |] ≤ E [|X |] and

KP (|Y | > K ) ≤ E [|Y |] ≤ E [|X |] .

From here and (88) we get

P (|Y | > K ) < δ.

Clearly, {|Y | > K} ∈ G, so by (89) we get

E [|Y |; |Y | ≥ K ] = E [|E [X |G] |; |Y | ≥ K ]

≤ E [|X |; |Y | ≥ K ] < ε.�

Károly Simon (TU Budapest) Markov Processes & Martingales C File 124 / 188

UI martingales cont.

Theorem 8.8

Let M be a UI martingale. Then

(90) M∞ := lim
n→∞Mn exists a.s. and in L1.

Further,

(91) Mn = E [M∞|Fn] .

Proof
It follows from Theorem 3.5 that M∞ := lim

n→∞Mn a.s.

exists since M is an L1-bounded martingale.
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UI martingales cont.

Proof cont.
We know that almost sure convergence implies
convergence in probability. So, both of the conditions of
the second point of Theorem 8.5 are satisfied. Hence

Mn
L1−→ M∞. This completes the proof of (90).

To prove (91), we only need to verify:

(92) E [M∞;F ] = E [Mn;F ] , ∀F ∈ Fn.
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UI martingales cont.

Proof cont.
Let r > n. Then E [Mr |Fn] = Mn. Hence, for ∀F ∈ Fn

we have

(93) E [Mn;F ] = E [Mr ;F ] → E [M∞;F ]

since Mr → M∞ is L1. This implies that (92) holds,
which completes the proof of (91).
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Lévy’s Upward Theorem

Theorem 8.9 (Lévy’s Upward Theorem)

Let X ∈ L1 and on the filtered probability space
(Ω, F , {Fn} ,P) and let

Mn := E [X |Fn] and Y := E [X |F∞] ,

where F∞ := σ(Fn, n ∈ N). Then

(a) M = (Mn) is a UI martingale and

(b) Mn → Y a.s. and in L1.
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Lévy’s Upward Theorem cont.

Note that Theorem 8.9 is weaker than Theorem 6.3
(which we did not prove), but we prove Theorem 8.9.

Proof of Thm 8.9 part (a)

M is a martingale since by the tower property:

E [Mn+1|Fn] = E


E [X |Fn+1]︸ ︷︷ ︸

Mn+1

|Fn


 = Mn.

M is UI by Theorem 8.7.
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Lévy’s Upward Theorem cont.

So, M is UI. Then by Theorem 8.8 ∃M∞ s.t.

(94) Mn −→ M∞ a.s. and in L1.

So, we only need to prove that

(95) Y = M∞ .

Proof of Thm 8.9 part (b)

WLOG (acronym for without loss of generality) we can
(and do) assume that X ≥ 0 . Let ν1, ν2 be measures on
the measurable space (Ω, F∞) defined by:

ν1(F ) := E [Y ;F ] and ν2(F ) := E [M∞;F ] , F ∈ F∞.
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Lévy’s Upward Theorem cont.

Proof of Thm 8.9 part (b) cont.
First observe that by tower property:

E [Y |Fn] = E [X |Fn] = E [M∞;F ] , ∀F ∈ Fn .

Namely, the first equality follows from the tower
property, the second one was checked in (92).
So, ν1, ν2 coincide on the π-system ∪Fn (which is
actually an algebra). So, ν1 is equal to ν2 also on F∞ .
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Lévy’s Upward Theorem cont.

Proof of Thm 8.9 part (b) cont.
Both Y and M∞ are F∞ measurable. So

F := {ω : Y (ω) > M∞(ω)} ∈ F∞.

Hence E [Y ;F ] = ν1(F ) = ν2(F ) = E [M∞;F ] . That is

E [Y − M∞;Y − M∞] = 0 .

That is P (Y > M∞) = 0. Similarly we can see that
P (M∞ > Y ) = 0 and this completes the proof of (95).
�
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Kolomorov’s 0 − 1 law

Theorem 8.10 (Kolmogorov’s 0 − 1 law)

Let X1,X2, . . . be a sequence of independent rv.

Tn := σ(Xn+1,Xn+2, . . . ), T :=
∞⋂

n=1

Tn.

We say that T is the tail σ-algebra. Then

(96) P (F ) = 0 or 1, ∀F ∈ T .
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Martingale proof for Kolomorov 0 − 1 law

Proof
Let

Fn := σ(X1, . . . ,Xn) ,

Fix an F ∈ T , and put Y := ✶F . Using the fact that
Y ∈ F∞ in the first equality and Levy’s upward Thm. in
the second one we get:

(97) Y = E [Y |F∞] = lim
n→∞E [Y |Fn] , a.s.

On the other hand, ∀n:

(98) Y ∈ Tn =⇒ Y is independent of Fn.
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Martingale proof for Kolomorov 0 − 1 law cont.

Proof cont.

(99) E [Y |Fn] = E [Y ] = P (F ) , a.s.

Putting together (97) and (99) we obtain that

Y = P (F ) .

Since by definition Y is either zero or one we obtain that
P (F ) is also either zero or one holds for all F ∈ T∞. �
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Levy’s Downward Theorem

Theorem 8.11 (Levy’s Downward Theorem)

Let {G−n : n ∈ N} be a sequence of sub-σ-algebras of F
on the probability space (Ω, F ,P) satisfying:

G−∞ :=
∞⋂

k=1

G−k · · · ⊂ G−(m+1) ⊂ G−m · · · ⊂ G−1.

Let X ∈ L1(Ω, F ,P) and let M−n := E [X |G−n] . Then

(a) M−∞ := lim
n→∞M−n exists a.s. and in L

1,

(b) M−∞ = E [X |G−∞] a.s.
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Levy’s Downward Theorem cont.

Proof
Observe that

(100) (Mk , Gk : −N ≤ k ≤ −1) .

is a FINITE martingale sequence. So, we can apply
Doob’s Upcrossing Lemma (slide # 25) for it. Clearly,
E [|M−k |] ≤ E [|X |] so M−n is L

1 bounded. Therefore we
can apply the steps of both Corollary 3.3 and Doob’s
Forward Convergence Theorem (slide # 29) to obtain
that ∃M−∞ s.t.

(101) M−∞ = lim
n→∞M−n, a.s.
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Levy’s Downward Theorem cont.

Proof cont.
Recall from the Figure on slide # 103 of the File "Some
basic Facts in Probability Theory" that
(102)

a.s. convergence =⇒ convergence in probability.

We apply this for M−n and Theorem 8.7 (in this order)
to get

(a) M−n
P−→ M−∞

(b) (M−n) is UI.

Using Theorem 8.5 we conclude that M−n
L1−→ M−∞.

This completes the proof of part (a).
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Levy’s Downward Theorem cont.

Proof part (b)
In particular this implies that

(103) lim
r→∞E [M−r ;G ] = E [M−∞;G ] , ∀G ∈ G∞.

In order to verify that

(104) M−∞ = E [X |G−∞]

it is enough to show that ∀G ∈ G−∞:

(105) E [M−∞;G ] = E [X ;G ] = E [E [X |G−∞] ;G ] .
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Levy’s Downward Theorem cont.

Proof of part (b) cont.

However, this follows from (103) if we can check that

(106) E [X ;G ] = E [M−r ;G ] , ∀G ∈ G−∞ ⊂ G−r .

This is immediate from the definition of conditional
expectation since by definition M−r = E [X |Gr ]. This
completes the proof of (104). �

Now we give a martingale proof for SLLN (Strong Law
of Large Numbers). At the end of the course Probability
1 you have seen a proof for the special case when the
4-th moments existed.
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Martingale proof for SSLN

Theorem 8.12 (SLLN)

Let X1,X2, . . . be iid. rv. with E [|X1|] < ∞. Let

µ := E [Xk ] , and Sn := X1 + · · ·+ Xn.

Then

(107) lim
n→∞

Sn
n
= µ , a.s. and in L1.

Also in the course Probability I, only the almost sure
convergence was stated.
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Martingale proof for SSLN cont.

Below we mention an important Corollary. It follows
easily from SLLN. This proof is assigned as homework #
35.

Corollary 8.13

Let X1,X2, . . . be iid. rv. with E [X+] = ∞ and
E [X−] < ∞. (Recall X = X+ − X− and X+,X− ≥ 0.)
We can use SLLN to prove that

Sn/n → ∞ , a.s.

where Sn := X1 + · · ·+ Xn.
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Martingale proof for SLLN cont.

Proof of Thm 8.12
Let

G−n := σ (Sn, Sn+1, . . . ) , G−∞ :=
∞⋂

n=1

G−n.

Clearly,
E [X1|G−n] = E [X1|Sn] .

However, it is easy to see (assigned as homework # 36)
that

(108) E [X1|Sn] = Sn/n.

So we obtain that
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Martingale proof for SLLN cont.

Proof of Thm 8.12 cont.

(109) M−n := E [X1|G−n] =
Sn

n
, a.s.

We apply Levy’s Downward Theorem for (M−n) to obtain
that the following limits exists:

(110) L := lim
n→∞

Sn
n

.

Observe that for each k

(111) L = lim
n→∞

Xk+1 + · · ·+ Xn

n
.
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Martingale proof for SLLN cont.

Proof of Thm 8.12 cont.
That is L ∈ TK := σ(XK+1,Xk+2, . . . ). So, L ∈ T∞.
Using Kolmogov’s 0 − 1 law this means that the rv L is
almost sure constant. Then it cannot be anything but

L = E [L] = lim
n→∞E

[
Sn

n

]
= µ.�
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Doob’s submartingale inequality

Theorem 8.14 (Doob’s submartingale inequality)

Let Z be a non-negative submartingale and L > 0.
Then
(112)

L · P
(
supk≤n Zk ≥ L

)
≤ E

[
Zn; supk≤n Zk

]
≤ E [Zn] .

Proof
F0 := {Z0 ≥ L},

Fk := {Z0 < L}∩{Z1 < L}∩· · ·∩{Zk−1 < L}∩{Zk ≥ L} .
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Doob’s submartingale inequality

Proof cont.
That is for T := min {k : Zk ≥ k} we have
Fk = {T = k}.
Clearly, Fk ∈ Fk and Zk ≥ L on Fk . That is for k ≤ n:
(113)
E [Zn;Fk ] = E [E [Zn|Fk ] ;Fk ] ≥ E [Zk ;Fk ] ≥ LP (Fk) .

To complete the proof it is enough to sum up for k ≤ n
since Zn ≥ 0 and



sup

k≤n
Zk ≥ L



 = F0

⊔
F1

⊔ · · · ⊔
Fn.�
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Recall a fact learned earlier

Remark 8.15

Recall that for a

convex function ϕ and a

martingale M = (Mn)

it follows from conditional Jensen’s inequality ( see slide
# 133 of File "Some basic facts from probability theory")
that

E [|ϕ(Mn)|] < ∞ =⇒ ϕ(Mn) is a submartingale.
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Kolmogorov’s inequality

Lemma 8.16 (Kolmogorov’s inequality)

Given a sequence of rv. (Xn, n ≥ 1). We assume that

(Xn, n ≥ 1) are independent,

E [Xi ] = 0,

Xi ∈ L2.

We define
Sn := X1 + · · ·+ Xn, Vn := Var(Sn) =

n∑
k=1

σ2
k . Then for

any L > 0 we have

(114) L2 · P
(
supk≤n |Sk | ≥ L

)
≤ Vn .
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Kolmogorov’s inequality cont.

Proof.
Fn := σ {X1, . . . ,Xn}. Then S = (Sn) is a martingale.
So, by Remark 8.15, S2 is a non-negative submartingale.
Hence, we can apply the Submartingale inequality for
S2.
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An estimate on normal distribution

Fact 9.1

Let X ∼ N (0, 1) and Φ and ϕ are the CDF and the
density of X respectively. That is

ϕ(x) =
1

2π
e− x2

2 ,

P (X > x) = 1 − Φ(x) =
∞∫

x

ϕ(y)dy .

Then for x > 0 we have

(a) P (X > x) ≤ x−1ϕ(x)

(b) P (X > x) ≥ (x + x−1)−1ϕ(x)
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An estimate on normal distribution cont.

Proof
It is easy to check that
(115)

ϕ′(x) = −xϕ(x) and


ϕ(x)

x




′
= −(1+ x−2)ϕ(x).

Using the first equality we get that for x > 0:

ϕ(x) =
∞∫

x

yϕ(y)dy ≥ x
∞∫

x

ϕ(y)dy .

Which yields (a).
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An estimate on normal distribution cont.

Proof cont
To verify (b), we use the second part of (115):

x−1ϕ(x) =
∞∫

x

(1+ y−2)ϕ(y)dy

≤ (1+ x−2)
∞∫
x

ϕ(y)dy .

which yields (b).

Károly Simon (TU Budapest) Markov Processes & Martingales C File 154 / 188

Kolmogov’s Law of Iterated Logarithm

Theorem 9.2 (Kolmogov’s Law of Iterated

logarithm (LIL))

Given a sequence of rv X = (Xn, n ≥ 1) satisfying:

X1,X2, . . . are iid ,

E [Xi ] = 0 ,

Var(Xi) = 1 .

As usual, we write Sn := X1 + · · ·+ Xn. Then almost
surely,
(116)

lim sup
n→∞

Sn√
2n log log n

= 1, lim inf
n→∞

Sn√
2n log log n

= −1.
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LIL

Figure: A plot of the average of n Bernoulli trials (each taking a
value of +/- 1). Plot of (red), its variance given by CLT (blue) and
its bound given by LIL (green). Figure is from Wikipedia.
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A crude heuristics

By CLT:
Sn√
n

D−→ N (0, 1).

If Sn√
n
was a N ∼ N (0, 1) then

∑

n
P

(
N >

√
(2+ ε) log log n

)
< ∞

and
∑
n
P

(
N >

√
(2 − ε) log log n

)
= ∞ so the first one

happens finitely many times and the second one happens
infinitely many times by BC Lemmas. (This is not a
proof just a heuristics. The second part of BC Lemma
(Lemma 5.12) holds only if the vents are independent.)
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Proof of LIL in a special case

We give the proof in the special case when

(117) Xi
D
= N (0, 1) .

Proof of LIL assuming (117)
Let

h(n) :=
√
2n log log n, for n ≥ 3.

First we verify that for every c > 0 and n ≥ 3 we have:

(118) P
(
supk≤n Sk ≥ c

)
≤ e− 1

2 c2/n .
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Proof of LIL in a special case cont.

Proof of LIL assuming (117) cont.
Namely, we have learned that the moment generating
function of the standard normal distribution Xi is

E
[
eθXi

]
= e

1
2 θ2
. Hence, E

[
eθSn

]
= e

1
2 θ2n < ∞ . For every

fixed θ ∈ R the function x → eθx is convex. So,
eθSn is a submartingale . So, we can use Submartingale
inequality for θ > 0:

P
(
supk≤n Sk ≥ c

)
=P


sup

k≤n
eθSk ≥ eθc


 ≤ e−θc

E
[
eθSn

]

= e−θce
1
2 θ2n .

For c > 0 choosing θ = c/n we obtain that (118) holds.

b
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Proof of LIL in a special case cont.

Proof of LIL assuming (117) (upper bound)

We choose a K > 1 (actually K will be close to 1). Let

cn := Kh(K n−1).

Then

P


 sup

k≤K n
Sk ≥ cn


 ≤ exp

(
−c2

n/2K n
)

= (n − 1)−K (logK )−K .
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Proof of LIL in a special case cont.

Proof of LIL assuming (117) (upper bound) cont.
From this and from the first BC Lemma: almost surely
for all n ≥ n0(ω) and for k ∈ [K n−1,K n] we have

(119) Sk ≤ sup
k≤K n

Sk ≤ cn = Kh(K n−1) ≤ Kh(k), a.s.

So, for K > 1: lim sup
k→∞

h(k)−1Sk ≤ K a.s. By letting

K ↓ 1 we get that

lim sup h(k)−1Sk ≤ 1 a.s.
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Proof of LIL in a special case cont.

Proof of LIL assuming (117) (lower bound)

Fix N > 1, N ∈ N and ε ∈ (0, 1). Define the events:

Fn :=
{
SNn+1 − SNn > (1 − ε)h

(
Nn+1 − Nn

)}
.

Then by Fact 9.1, for

y := (1 − ε)
√
2 log log (Nn+1 − Nn)
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Proof of LIL in a special case cont.

Proof of LIL assuming (117) (lower bound) cont.
we have

P (Fn) = 1 − Φ(y) ≥ 1√
2π · (y + y−1)

exp(−y 2/2).

By ignoring the logarithmic terms we see that

P (Fn) ∼ (n logN)−(1−ε)2

This yields that

(120)
∑
P (Fn) = ∞ .
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Proof of LIL in a special case cont.

Proof of LIL assuming (117) (lower bound) cont.
The events Fn are independent so, we can apply BC
Lemma (Lemma 5.12). This yields that almost surely
infinitely many of Fn occurs. That is for infinitely many
n:

(121) S
(
Nn+1

)
> (1 − ε)h

(
Nn+1 − Nn

)
+ S(Nn) .

Observe that (119) is also valid if we substitute S with
−S. For K = 2 this yields

S(Nn) > −2h(Nn).
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Proof of LIL in a special case cont.

Proof of LIL assuming (117) (lower bound) cont.
So, by the last twi displayed formulas:

S
(
Nn+1

)
> (1 − ε)h

(
Nn+1 − Nn

)
− 2h(Nn)

From here, simple algebraic manipulations yield:

lim sup
k→∞

h(k)−1Sk ≥ lim sup
n→∞

h(Nn+1)−1S(Nn+1)

≥ (1 − ε)
√
1 − N−1 − 2√

N
.

This completes the proof since this holds for all N . �
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An Auxiliary Lemma

Lemma 10.1

Given X ,Y ≥ 0 rv. staisfying:

(122) cP (X ≥ c) ≤ E [Y ;X ≥ c] , ∀c > 0.

For every p > 1 we define the conjugate q of p by

(123)
1

p
+
1

q
= 1.

Then we have

(124) ‖X‖p ≤ q · ‖Y ‖p .
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Proof of Lemma 10.1

Proof

L : =
∞∫

c=0

pcp−1
P (X ≥ c) dc

(122)

≤
∞∫

c=0

pcp−2
E [Y ;X ≥ c] dc =: R

By Fubini Thm. we get
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Proof of Lemma 10.1

Proof cont.

L =
∞∫

c=0




∫

Ω

✶{X≥c}(ω)dP(ω)


 pcp−1dc(125)

=
∫

Ω




X (ω)∫

c=0

pcp−1dc


 dP(ω) = E [X p] .

Similarly we get

(126) R = E
[
q · X p−1 · Y

]
.

By Hölder inequality:
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Proof of Lemma 10.1

Proof cont.

(127)
E [X p] = L ≤ R = E

[
qX p−1Y

]
≤ q‖Y ‖p‖X p−1‖q.

WLOG we may assume that ‖Y ‖p < ∞ .

If additionally, ‖X‖p < ∞ then by (p − 1)q = p we get

‖X p−1‖q = E [X p]1/q .

Using this and (127) we get

(E [X p])1−1/q = ‖X‖p ≤ q‖Y ‖p .
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Proof of Lemma 10.1

Proof cont.
For general X we do the same for X ∧ n to conclude that

‖X ∧ n‖p ≤ q‖Y ‖p , ∀n.

Then we apply Monoton Conv. Thm. which concludes
the proof of the Lemma.�
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Doob’s L
p inequality

Theorem (Doob’s L
p inequality)

Fix a p > 1 and let q its conjugate, defined by
1
p

+ 1
q

= 1. Given the process Z = (Zn) satisfying:

non-negative,

submartingale,

sup
n

‖Zn‖p < ∞. (Z is Lp-bounded.)

We use the standard notation:

Z ∗ := sup
k
Zk .

Then Z ∗ ∈ Lp.
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Doob’s L
p inequality cont.

Theorem (Doob’s L
p inequality cont.)

More precisely,

(128) ‖Z ∗‖p ≤ q · sup
r

‖Zr‖p .

So, the non-negative submartingale Z is Lp-dominated
(by Z ∗ ∈ Lp). Further,

(129) Z∞ := lim
n→∞Zn exists a.s. and in Lp and

(130) ‖Z∞‖p = sup
r

‖Zr‖p =↑ lim
r→∞ ‖Zr‖p.
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Doob’s L
p inequality cont.

Theorem (Doob’s L
p inequality cont.)

In the special case when Zn = |Mn| for a martingale

M = (Mn) which is bounded in Lp then

(131) M∞ := lim
n→∞Mn exists a.s. and in Lp.

and

(132) Z∞ = |M∞| a.s.
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Doob’s L
p inequality cont.

Proof of Doob’s L
p inequality

First we prove that (128) holds. Let

Z ∗
n := sup

k≤n
Zk .

Doob’s submartingale inequality yields:

(133) cP (Z ∗
n ≥ c) ≤ E [Zn; {Z ∗

n ≥ c}]

Now we apply Lemma 10.1 with

X = Z ∗
n and Y = Zn.
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Doob’s L
p inequality cont.

Proof of Doob’s L
p inequality cont.

to obtain that

‖Z ∗
n ‖p ≤ q‖Zn‖p ≤ q sup

r
‖Zr‖p.

That is Z ∗ is Lp-bounded. Observe that −Z is an
Lp-bounded supermartingale. Hence, −Z is also an
L1-bounded supermartingale. Doob’s Forward
Convergence Thm. (Theorem 3.5) yields that

(134) Z∞ := lim
n→∞Zn exists a.s.
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Doob’s L
p inequality cont.

Proof of Doob’s L
p inequality cont.

On the other hand,

|Zn − Z∞|p ≤ (2Z ∗)p ∈ Lp.

Using Dominated Conv. Thm. we get

Zn
Lp−→ Z∞ .

Now we verify that

(135) {‖Zr‖p}r is monotone increasing.
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Doob’s L
p inequality cont.

Proof of Doob’s L
p inequality cont.

Namely, consider the convex function

ϕ(x) := |x |p.

By the Conditional Jensen’s inequality (File Some Basic
Facts from Probability Theory, ...133 ) we have:

‖Zr+1‖p
p = E [ϕ(Zr+1)] = E [E [ϕ(Zr+1)|Fr ]]

cond .Jensen≥ E [ϕ (E [Zr+1|Fr ])]

≥ E [ϕ (Zr)] = ‖Zr‖p
p .
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Doob’s L
p inequality cont.

Proof of Doob’s L
p inequality cont.

To verify (131) and (132) is a homework. �
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Product Martingales

Kakutani’s Theorem

Given X = (Xn) satisfying:

X1,X2, . . . are independent

Xk are non-negative for all k .

E [Xk ] = 1 for all k .

Then for Mn :=
n∏

i=1
Xi is a non-negative martingale (see

File E of the course Stochastic processes). Hence
M∞ := lim

n→∞Mn exists a.s. We introduce:

(136) an := E

[√
Xn

]
.
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Product Martingales cont.

Kakutani’s Theorem cont.
Then the following conditions are equivalent

(a) E [M∞] = 1,

(b) Mn
L1−→ M∞,

(c) M is UI.

(d)
∞∏

n=1
an > 0,

(e)
∞∑

n=1
(1 − an) < ∞.

If any of these conditions does not hold then

(137) P (M∞ = 0) = 1.
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Product Martingales cont.

Proof of Kakutani’s Theorem cont.
First observe that by Jensen’s inequality:

(138) 0 ≤ = an = E

[√
Xn

]
≤

√
E [Xn] = 1 .

Assume that (d) holds. Let

(139) Nn :=
n∏

k=1

√
Xk

ak

.

Clearly, Nn is a martingale (product of independent
nonnegative rv having mean 1).
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Product Martingales cont.

Proof of Kakutani’s Theorem
By independence and (138):

(140) E
[
N2

n

]
≤ 1

n∏
k=1

a2
k

≤ 1
∞∏

k=1
a2

k

< ∞ .

That is Nn is L
2 bounded. So, we can apply Doob’s L2

inequality (Theorem 172 with p = 2) for N2
n in the

second step below:
(141)

E

[
sup

n
|Mn|

]
≤ E

[
sup

n
N2

n

]
≤ 4 sup

n
E

[
N2

n

]
< ∞ .
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Product Martingales cont.

Proof of Kakutani’s Theorem
That is

M∗ := sup
n

|Mn| ∈ L1 .

That is M is a UI martingale which implies that
properties (a), (b), (c) hold.

On the other hand,

Assume that
∞∏

n=1
an = 0. Then N defined in (139) is a

nonnegative martingale, so its limit N∞ exists a.s. This
implies that M∞ = 0 a.s. since

∏
an = 0.�

Károly Simon (TU Budapest) Markov Processes & Martingales C File 185 / 188

[1] BalÃązs MÃąrton, TÃşth BÃąlint
ValÃşszÃŋnÅśsÃľgszÃąmÃŋtÃąs 1. jegyzet matematikusoknak Ãľs fizikusoknak
BÃąlÃązs MÃąrton Honlapja, 2012. Az internettes vÃąltozatÃľrt kattintson ide.

[2] P. Billingsley
Convergence of probability measures
Wiley, 1968

[3] B. Driver
Analysis tools with examples
Lecturenotes, 2012. Click here.

[4] R. Durrett
Essentials of Stochastic Processes, Second edition
Springer, 2012. Click here

[5] R. Durrett
Probability: Theory with examples, 4th edition
Cambridge University Press, 2010.

[6] R. Durrett
Probability: Theory and Examples
Click here

[7] D.H. Fremlin
Measure Theory Volume I
Click here

[8] D.H. Fremlin
Measure Theory Volume II
Click here

[9] O. van Gaans
Probability measures on metric spaces
Click here

Károly Simon (TU Budapest) Markov Processes & Martingales C File 186 / 188

[10] I.I. Gihman, A.V. Szkorohod
BevezetÃľs a sztochasztikus folyamatok elmÃľletÃľbe
MÅśszaki KÃűnyvkiadÃş1975, Budapest, 1985

[11] S. Karlin, H.M. Taylor
A first course in stochastic processes
Academic Press, New York, 1975

[12] S. Karlin, H.M. Taylor
Sztochasztikus Folyamatok
Gondolat, Budapest, 1985

[13] S. Karlin, H.M. Taylor
A second course in stochastic processes
, Academic Press, 1981

[14] A.F. Karr
Probability
Springer-Verlag, 1993

[15] G. Lawler
Intoduction to Stochastic Processes
Chapmann & Hall 1995.

[16] D.A. Levin, Y. Peres,E.L. Wilmer
Markov chains and mixing times
American Mathematical Society, 2009.

[17] Major PÃľter
Folytonos idejÅś Markov lÃąncok http://www.renyi.hu/~major/debrecen/debrecen2008a/markov3.html

[18] P. Mattila Geometry of sets and measure in Euclidean spaces. Cambridge, 1995.

[19] RÃľnyi AlfrÃľd
ValÃşszÃŋnÅśsÃľgszÃąmÃŋtÃąs, (negyedik kiadÃąs)
TankÃűnyvkiadÃş Budapest, 1981.

Károly Simon (TU Budapest) Markov Processes & Martingales C File 187 / 188

[20] S.I. Resnik
A Probability Path
Birkhäuser, 2005

[21] S. Ross
A First Course in Probability, 6th ed.
Prentice Hall, 2002

[22] TÃşth BÃąlint Sztochasztikus folyamatok jegyzet
TÃşth BÃąlint JegyzetÃľrt kattintson ide

[23] D. Williams
Probability with Martingales
Cambridge 2005

Károly Simon (TU Budapest) Markov Processes & Martingales C File 188 / 188


